1,654 research outputs found

    A hybrid brain-computer interface based on motor intention and visual working memory

    Get PDF
    Non-invasive electroencephalography (EEG) based brain-computer interface (BCI) is able to provide alternative means for people with disabilities to communicate with and control over external assistive devices. A hybrid BCI is designed and developed for following two types of system (control and monitor). Our first goal is to create a signal decoding strategy that allows people with limited motor control to have more command over potential prosthetic devices. Eight healthy subjects were recruited to perform visual cues directed reaching tasks. Eye and motion artifacts were identified and removed to ensure that the subjects\u27 visual fixation to the target locations would have little or no impact on the final result. We applied a Fisher Linear Discriminate (FLD) analysis for single-trial classification of the EEG to decode the intended arm movement in the left, right, and forward directions (before the onsets of actual movements). The mean EEG signal amplitude near the PPC region 271-310 ms after visual stimulation was found to be the dominant feature for best classification results. A signal scaling factor developed was found to improve the classification accuracy from 60.11% to 93.91% in the two-class (left versus right) scenario. This result demonstrated great promises for BCI neuroprosthetics applications, as motor intention decoding can be served as a prelude to the classification of imagined motor movement to assist in motor disable rehabilitation, such as prosthetic limb or wheelchair control. The second goal is to develop the adaptive training for patients with low visual working memory (VWM) capacity to improve cognitive abilities and healthy individuals who seek to enhance their intellectual performance. VWM plays a critical role in preserving and processing information. It is associated with attention, perception and reasoning, and its capacity can be used as a predictor of cognitive abilities. Recent evidence has suggested that with training, one can enhance the VWM capacity and attention over time. Not only can these studies reveal the characteristics of VWM load and the influences of training, they may also provide effective rehabilitative means for patients with low VWM capacity. However, few studies have investigated VWM over a long period of time, beyond 5-weeks. In this study, a combined behavioral approach and EEG was used to investigate VWM load, gain, and transfer. The results reveal that VWM capacity is directly correlated to the reaction time and contralateral delay amplitude (CDA). The approximate magic number 4 was observed through the event-related potentials (ERPs) waveforms, where the average capacity is 2.8-item from 15 participants. In addition, the findings indicate that VWM capacity can be improved through adaptive training. Furthermore, after training exercises, participants from the training group are able to improve their performance accuracies dramatically compared to the control group. Adaptive training gains on non-trained tasks can also be observed at 12 weeks after training. Therefore, we conclude that all participants can benefit from training gains, and augmented VWM capacity can be sustained over a long period of time. Our results suggest that this form of training can significantly improve cognitive function and may be useful for enhancing the user performance on neuroprosthetics device

    Rashba Spin Interferometer

    Full text link
    A spin interferometer utilizing the Rashba effect is proposed. The novel design is composed of a one-dimensional (1D) straight wire and a 1D half-ring. By calculating the norm of the superposed wave function, we derive analytical expressions to describe the spin interference spectrum as a function of the Rashba coupling strength. Presented spin interference results are identified to include (i) the quantum-mechanical 4pi rotation effect, (ii) geometric effect, and (iii) Shubnikov-de Haas-like beating effect.Comment: 3 pages, 3 figures, appears in the proceedings of the 10th Joint MMM/Intermag Conferenc

    Quantum World-line Monte Carlo Method with Non-binary Loops and Its Application

    Get PDF
    A quantum world-line Monte Carlo method for high-symmetrical quantum models is proposed. Firstly, based on a representation of a partition function using the Matsubara formula, the principle of quantum world-line Monte Carlo methods is briefly outlined and a new algorithm using non-binary loops is given for quantum models with high symmetry as SU(N). The algorithm is called non-binary loop algorithm because of non-binary loop updatings. Secondary, one example of our numerical studies using the non-binary loop updating is shown. It is the problem of the ground state of two-dimensional SU(N) anti-ferromagnets. Our numerical study confirms that the ground state in the small N <= 4 case is a magnetic ordered Neel state, but the one in the large N >= 5 case has no magnetic order, and it becomes a dimer state.Comment: 14 pages, 5 figures, Invited talk at the 18th Annual Workshop on Recent Developments of Computer Simulation Studies in Condensed Matter Physics, Athens, 7-11 March, 200

    Effects of natto extract on endothelial injury in a rat model

    Get PDF
    Vascular endothelial damage has been found to be associated with thrombus formation, which is considered to be a risk factor for cardiovascular disease. A diet of natto leads to a low prevalence of cardiovascular disease. The aim of the present study was to investigate the effects of natto extract on vascular endothelia damage with exposure to laser irradiation. Endothelial damage both in vitro and in vivo was induced by irradiation of rose bengal using a DPSS green laser. Cell viability was determined by MTS assay, and the intimal thickening was verified by a histological approach. The antioxidant content of natto extract was determined for the free radical scavenging activity. Endothelial cells were injured in the presence of rose bengal irradiated in a dose-dependent manner. Natto extract exhibits high levels of antioxidant activity compared with purified natto kinase. Apoptosis of laser-injured endothelial cells was significantly reduced in the presence of natto extract. Both the natto extract and natto kinase suppressed intimal thickening in rats with endothelial injury. The present findings suggest that natto extract suppresses vessel thickening as a synergic effect attributed to its antioxidant and anti-apoptosis properties

    Broken spin-Hall accumulation symmetry by magnetic field and coexisted Rashba and Dresselhaus interactions

    Full text link
    The spin-Hall effect in the two-dimensional electron gas (2DEG) generates symmetric out-of-plane spin Sz accumulation about the current axis in the absence of external magnetic field. Here we employ the real space Landauer-Keldysh formalism [B. K. Nikolic et al., Phys. Rev. Lett. 95, 046601 (2005); Phys. Rev. B 73, 075303 (2006)] by considering a four-terminal setup to investigate the circumstances in which this symmetry is broken. For the absence of Dresselhaus interaction, starting from the applied out-of-plane B corresponding to Zeeman splitting energy 0 - 0.5 times the Rashba hopping energy tR, the breaking process is clearly seen. The influence of the Rashba interaction on the magnetization of the 2DEG is studied herein. For coexisted Rashba tR and Dresselhaus tD spin-orbit couplings in the absence of B, interchanging tR and tD reverses the entire accumulation pattern.Comment: 3 pages, 2 figures, appears in the proceedings of 10th MMM/INTERMAG conferenc

    Down-regulation of Survivin enhances sensitivity to BPR0L075 in human cancer cells via caspase-independent mechanisms

    Get PDF
    Background: BPR0L075 [6-methoxy-3-(3&#x27;,4&#x27;,5&#x27;-trimethoxy-benzoyl)-1H-indole] is a novel anti-cancer compound. It inhibits tubulin polymerization and induces mitochondrial-dependent apoptosis in various human cancer cells with different multi-drug resistance (MDR) status. Over-expression of an anti-apoptotic molecule, survivin, causes drug-resistance in various cancers. Survivin inhibits apoptosis by interfering caspase-3 and promotes cell growth by stabilizing microtubule networks. Here, we determined the effects of down-regulation of survivin in BPR0L075 (L075) treatment. Methods: Western blot analysis was used to determine the expression level of survivin in L075-untreated/-treated human oral carcinoma KB and nasopharyngeal carcinoma HONE-1 cancer cells. siRNA was used to down-regulate endogenous survivin. MTT cell viability assay, real-time caspase-3 activity assay and immuno-fluorescence microscopy were used to analyze downstream effects. Results: Survivin expression was up-regulated in both KB and HONE-1 cells in response to L075 treatment. Down-regulation of survivin induced hyper-sensitivity to L075 in KB and re-stored sensitivity to L075 in KB-derived L075-resistant KB-L30 cancer cells. At the molecular level, down-regulation of survivin induced changes in microtubule dynamics in both KB and KB-L30 cells. Surprisingly, down-regulation of survivin did not enhance the activity of caspase-3 in L075 therapy. Instead, down-regulation of survivin induced translocation of the apoptosis-inducing factor (AIF) from cytoplasm to nucleus. Conclusion: Down-regulation of survivin improved drug sensitivity to L075 in both KB and L075-resistant KB-L30 cancer cells, possibly through a tubulin-dependent and caspase-independent mechanism. We suggest that combining BPR0L075 and survivin inhibitor may give better clinical outcome than the use of BPR0L075 monotherapy in future clinical trials

    Growth rate regulation of lac operon expression in Escherichia coli is cyclic AMP dependent

    Get PDF
    AbstractIn contrast to the ribosomal RNA gene expression increasing with growth rate, transcription of the lac operon is downregulated by cell growth rate. In continuous culture, growth rate regulation of lac promoter was independent of carbon substrate used and its location on the chromosome. Since the lac operon is activated by cyclic adenosine monophosphate (cAMP), which decreases with increasing cell growth rate, expression of plac-lacZ reporter fusion was analyzed in cya mutant under various growth conditions. The results demonstrated that expression of plac-lacZ in cya mutant was both lower and growth rate independent. In addition, ppGpp (guanosine tetraphosphate) was not involved in the mechanism of growth rate regulation of the lac promoter. Thus, the results of this study indicate that cAMP mediates the growth rate-dependent regulation of lac operon expression in Escherichia coli
    • …
    corecore